3G/4G Services Evolution in Pakistan

(Mitigating Threats to Landline Business through a developed Services Model)

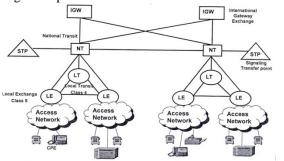
Misbah Ur Rehman & Dr. Irfan Zafar

Abstract: With the introduction of 3G/4G services by the mobile companies, there is an eminent threat to the legacy landline business because of the data services being offered by the mobile companies. Unless and until some sustainable model is not devised, the landline business might suffer immensely with declining revenues. The research thesis will cover the present telecom scenario in the country and will look at the pre and post 3G/4G licensing scenario. After doing this analysis, the landline network will be studied and a model will be developed which will take care of the threat to the landline network.

The above will be achieved through an in depth analysis of, Telecom Network Infrastructure, Technology trends and wireless network evolution, Telecommunication market in Pakistan, Post 3G-SWOT analysis for PTCL, Threats & risks for PTCL in a post 3G world, Challenges for 3G operators in post 3G environment, Case Studies – How markets behave in post 3G environment & Post 3G road map for fixed line operators

Background

This section looks at different types of telecommunication infrastructures existing and deployed in the country. This will broadly look into the following types of networks:


- Public Switched Telephone Network (PSTN)
- Copper Access Network
- ADSL Network.
- General IPTV Diagram
- FTTx Application Scenario
- Internet Service
- VOIP Service
- Full Optical Access Network Solution
- Full Optical Access Network Solution
- NGN Network Architecture
- PTCL IP Core

Telecom Network Infrastructure

Following are the different network - infrastructures in place in the country.

- Public Switched Telephone Network (PSTN)

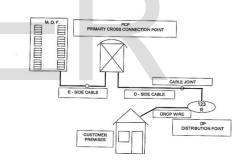

It is the basic and the oldest telephone network deployed in the country. We also call it the legacy network which provided the user with the basic facility to talk to one another over shorter or longer distances. Fig 1.1 explains the network architecture.

Fig 1.1: Legacy PSTN Network (Source: Pakistan Telecommunication Company Ltd) [1]

Copper Access Network

The public switched network mainly comprises of the copper cables network. We call it the copper distribution network. Fig 1.2 shows the basic architecture of the copper access network. It is also called the last mile.

Fig 1.2: Copper Access Network

(Source: Pakistan Telecommunication Company Ltd. Legacy customer to exchange setup)

Various Access Network Characteristics include the point to point/star architecture, voice & low speed data provisioning and is a passive network. Because of its limited reliability, slower deployment, limited flexibility, limited bandwidth and high cost of maintenance, it is being replaced by optical fiber networks across the country.

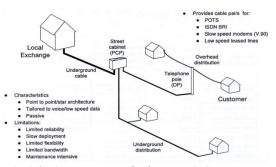


Fig 1.3: Access network characteristics (Source: Pakistan Telecommunication Company Ltd, PTCL

IJSER © 2015 http://www.ijser.org

- ADSL Network

)

In telecom, it is not wise to throw away a network on which millions of dollars of investment has been made. The basic idea is to do away with the network in phases. The older network will fizzle out with the passage of time. Hence keeping this in mind, another network by the name of Asymmetrical Digital Subscriber Line (ADSL) was introduced which used the existing copper pairs and provided higher data rates on the publish switched network which was primarily designed to carry voice traffic but with the introduction of the data traffic, the same was being used at lower speeds for data applications. However with the introduction of ADSL network, higher data rates on the copper network were achieved. Fig 1.4 shows a typical ADSL network design architecture.

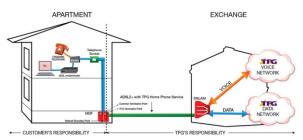


Fig 1.4: ADSL Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

However further enhancement in the ADSL networks to further improve the data rates on the existing copper network led to the deployments of ADSL2+ technology (Fig 1.5)

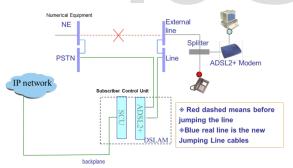


Fig 1.5: ADSL2+ Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

- General IPTV Diagram

As the demand for newer services grew, introduction of internet Protocol television (IPTV) came up which provided the users with the service of watching television channels over the IP protocol platform. IP settop box was installed at the user premises (Fig 1.6) coupled up with a back end network consisting of voice encoder, DSLAM, subscriber management system, video on demand and DSL modem infrastructure.

DSLAM = Digital Subscriber Line Access Multiplexer Fig 1.6: IPTV Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

The existing architecture of Pakistan Telecommunication Company Ltd (PTCL) is shown in Fig 1.7. As IP works on the internet platform, hence the same has been provided through the backend routers connected to the internet cloud.

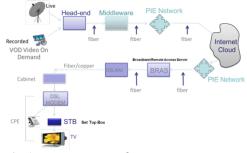


Fig 1.7: IPTV Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

FTTx Application Scenario

However despite using the existing copper network with the introduction of many new devices, the speeds could not be further enhanced as a more powerful medium was required which cannot be other than the fiber optics network. As detailed earlier, different phases of the network design led to the introduction of fiber in the loop. Fig 1.8 explains various scenario's in this regards.

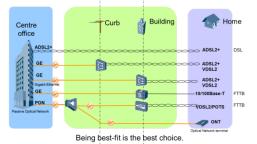


Fig 1.8: FTTx Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

Fig 1.9 through Fig 1.13 shows various scenarios (architecture designs) independently.

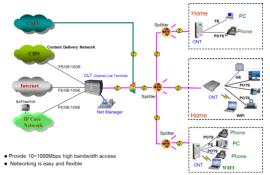


Fig 1.9: Fiber to the Home (FTTH) (Source: Pakistan Telecommunication Company Ltd, PTCL)

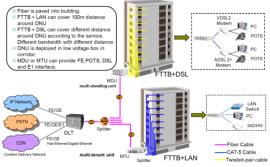


Fig 1.10: Fiber to the Building (FTTB) (Source: Pakistan Telecommunication Company Ltd, PTCL)

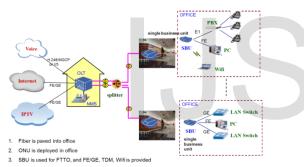
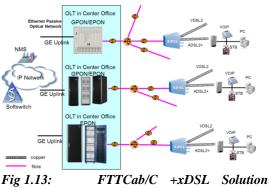
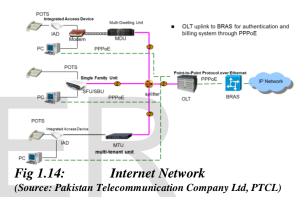



Fig 1.11: Fiber to the Office (FTTO) (Source: Pakistan Telecommunication Company Ltd, PTCL)

Fig 1.12: Fiber to the Curb/Cabinet (FTTC) (Source: Pakistan Telecommunication Company Ltd, PTCL)



(Source: Pakistan Telecommunication Company Ltd, PTCL)

Internet Service

PON

Introduction of Internet services brought about a revolution in the world whereas this mushroom of interconnected devices connected almost the entire planet thus enabling each human being to connect to the other instantaneously (Fig 1.14).

VOIP Service

The above outlined developments finally led to voice from being on the SS7 signaling platform to be translated on the Voice over internet Protocol (VOIP). People used the same voice services but the platform shifted to VOIP (Fig 1.15).

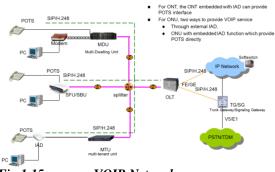


Fig 1.15:VOIP Network(Source: Pakistan Telecommunication Company Ltd, PTCL)

- Full Optical Access Network Solution

With the deployment of the full optical network, the bandwidth provisioning at the higher rates has not remained a problem. Voice, video and data can be easily provided on this end to end optical network. (Fig 1.16).

with

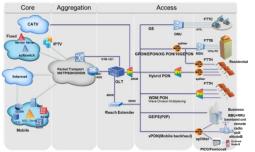
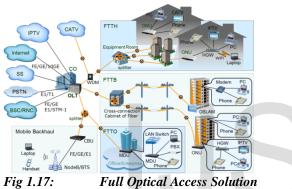



Fig 1.16: Full Optical Access Solution (Source: Pakistan Telecommunication Company Ltd, PTCL)

- Full Services Access

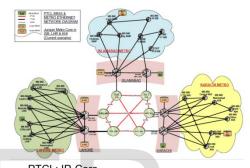
With the deployment of the above technologies, especially the fiber in the loop, all the services starting from low speed voice to high speed data/video can be provided to the users through an interconnected network, (Fig 1.17).

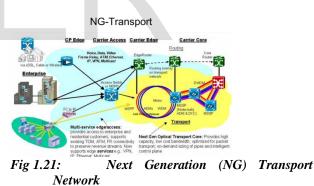
(Source: Pakistan Telecommunication Company Ltd, PTCL)

- NGN Network Architecture

It should be understood here that the Next generation Network (NGN) is not some typical standard network but it is basically a "concept" how the future networks are going to look like. In order to avoid operational costs like buildings, staff, power, infrastructure etc., the legacy PSTN networks were transformed into the NGN networks thus integrating all the products, services and management on a single platform. Fig 1.18 & Fig 1.19 depict the NGN network and how it has been transformed from the legacy network to the present state.




Fig 1.18:NGN Network Architecture(Source: Pakistan Telecommunication Company Ltd, PTCL)


Fig 1.19: PSTN to NGN Evolution (Source: Pakistan Telecommunication Company Ltd, PTCL)

- PTCL IP Core

Fig 1.20 & Fig 1.21 present the PTCL metro-Ethernet network core at Islamabad, Lahore and Karachi and the NG transport network respectively.

PTCL: IP-Core
Fig 1.20: PTCL IP Core Network
(Source: Pakistan Telecommunication Company Ltd, PTCL)

(Source: Pakistan Telecommunication Company Ltd, PTCL)

Convergence in Telecom

The man aim of all the technological developments taking place in terms of infrastructure, services and deployments, the main aim was to achieve a converged setup (Fig 1.22) whose maintenance and operations becomes easy and cost effective. Plus all the services should come on a common protocol platform of IP. So now a broadband access solution has been able to achieve all this (Fig 1.23)

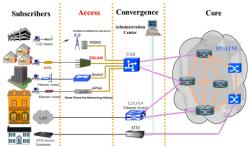


 Fig 1.22:
 Convergence of Technology

 (Source: Pakistan Telecommunication Company Ltd, PTCL)

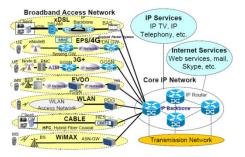


Fig 1.23: Broadband Access Network (Source: Pakistan Telecommunication Company Ltd, PTCL)

Grey Traffic

It should be noted that the deployment of any technology also leads to some technical Challenges & threats which are to be mitigated. Grey traffic is one such threat which involves by-passing the existing IT infrastructure of exchanges and nodes thus involving the use of illegal gateway's for the termination of voice and data traffic.

This is the major cause of revenue losses to the telecom operators. Their mitigation requires deployment of added network infrastructure, fraud detection mechanisms so that the networks can be secured. Fig 1.24 & Fig 1.25 depict the scenario's how the illegal traffic is being transmitted.

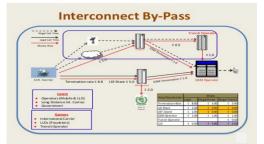


Fig 1.24: Grey Traffic: Interconnect By-Pass (Source: Generic Network Architecture for grey traffic)

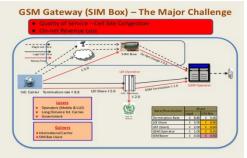


Fig 1.25: Grey Traffic: GSM Gateway (Source: Generics GSM gateway concept for grey traffic)

Wireless Networks Evolution

Here we look at various developments taking place on the wireless side of the networks.

Main Trends

Telecom industry has witnessed the development of technology trends especially in case of wireless access. Social networking, digitization, cloud computing, wideband connectivity, application stores, online services, context awareness, big data explosion, ubiquitous communication, green IC and cognitive systems are just some of the trends in the wireless communication leading towards globalization.

Fig 2.1: Main Trends

Starting from desktop internet communication since 2000, the development of broadband mobile internet in 2009 to the interaction with real life objects, we have achieved a concept of smart spaces which will lead us towards a ubiquitous virtual world where the line between reality and virtual reality will somehow start fading away.

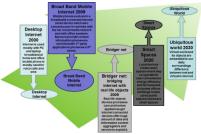


Fig 2.2: A ubiquitous world

Table 2.1 summarizes the new trends being witnessed as far as the rising technologies are concerned. From social networking to mobile web, the effect has been a total change of life styles across the world. Availability of machines, especially while on the run, is the key trend witnessed on the wireless scene. This has undoubtedly put pressure on the landline networks which are competing with the variety of mobile deployments and applications.

- Social Networking
 Portable mobile
- Online Services
- Virtualization of Devices
 Application stores
- Cloud Computing
- Green Computing awareness
- Cognitive Networks
 (software defined radio's)
- Cellular broadbandTouchscreens

applications

Enhanced location

- E-books and e-book devices
- Machine-to-machine
- (M2M)

 More generic security
- Bluetooth
 Mobile web

Rising new technologies

Data Traffic Growth Foecast

In order to do any planning of the networks, it is customary for us to have a look at the data traffic growth trends so that the sizing and the dimensioning of the telecom infrastructure can be made. Fig 2.3 illustrates the conservative and aggressive forecasts based on the historical trends and future exponential growth trends. This is a measure of rightly planning and designing the future networks.

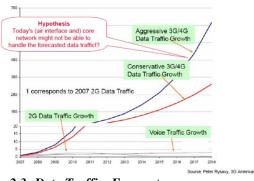


Fig 2.3: Data Traffic: Forecast (Source: Peter Rysavy, 3G Americas) [2]

Mobile Networks Evolution

History of the cell phones dates back to 1973 when Dr. Martin Cooper invented the very first handset. The subsequent developments are tabulated in order in Table 2.2.

1973-D	r. Martin Cooper invents the first personal handset while working for
Motorol	à.
1979-Fi	rst cellular phone communication network started in Japan.
1988-TI	he Cellular Technology Industry Association is created and helps to make the
industry	into an empire.
1999-Fin	st introduction of Mobile Web
2007-A	pple Releases the i-Phone

Table 2.2:MobileEvolutionHistoricalTimeline

(Source: Internet collected data for timelines: <u>http://www.staygolinks.com/a-</u> <u>timeline-on-the-evolution-of-mobile-communications.htm</u>)

From there onwards, transformation from 1G to 4G networks has been phenomenal.

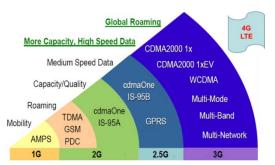


Table 2.3 lists the technological evolution in terms of the respective speeds.

2G		2. 5G		G	4G		
Name	e Name	Download	Name	Download	Name	Download	
TDMA	GPRS	115 Kbit/s	WCDMA (UMTS)	384 Kbp/s	LTE	100 Mbp/s	
	EDGE	236 Kbp/s	HSPA (UMTS)	14 Mbit/s	WIMAX	50 Mbp/s	
					HSPA+	56 Mbit/s	
CDMA2	000		EVDO (CDMA2000)	3.1 Mbit/s			

 Table 2.3:
 Mobiles: Technology/Speeds

 (Source: Internet
 (Source: Internet)

https://www.google.com.pk/search?q=3g+to+4g+evolution&newwindow=1&so urce=lnms&tbm=isch&sa=X&ved=0CAcQ_AUoAWoVChMI6MfB19nIxwIVg aEUCh00FgBt&biw=1440&bih=763)

The various generations are explained below:

- First Generation "1G"
- 1st generation of (wireless telecommunication technology) 1983
- Replaced 0G technology (used for radio telephones)
- Used analog radio signals, not the digital signals

- Second Generation "2G"

- Started in1990's
- Used digital circuit switched transmissions.
- 2G, enabled quicker network signaling (lowered number of dropped calls).
- Less bulkier phones & not very large batteries

Fig 2.5 shows the network architecture of GSM architecture (2G/2.5G) with General Packet Radio Service (GPRS).

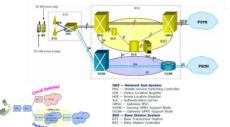


Fig 2.5: 2G-2.5G: GSM/GPRS Architecture (Source: Pakistan Telecommunication Company Ltd, PTCL)

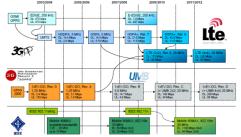


Fig 2.6: A complete mobile evolution path (Source:

Internet: https://www.google.com.pk/search?q=3g+to+4g+ evolution&newwindow=1&tbm=isch&tbo=u&source=univ &sa=X&ved=0CBsOsARqFOoTCO7J5 LayMcCFUrtFAo dpk4Kgg&biw=1440&bih=763)

- 3G Networks
- Most effective generation.
- 2 MB of data indoors and 384 Kbits for outdoor use.
- Enables emails, internet access & Wi-Fi.

Code Division Multiple Access (CDMA) technology came in great demand in the 3G networks. It had various features and advantages over the previous access schemes. Fig 2.7 - 2.12 describe in detail various features of the CDMA network along with its architectural design.

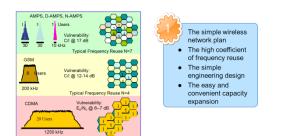


Fig 2.7: CDMA Features: Simple, Frequency Use & Capacity (Source: Pakistan Telecommunication Company Ltd, PTCL)

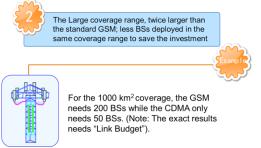
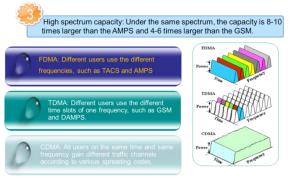
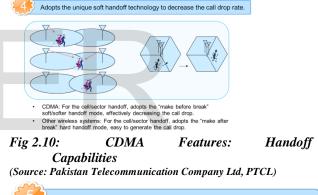




Fig 2.8: CDMA Features: Coverage Range (Source: Pakistan Telecommunication Company Ltd, PTCL)

Fig 2.9: CDMA Features: Spectrum (Source: Pakistan Telecommunication Company Ltd, PTCL)

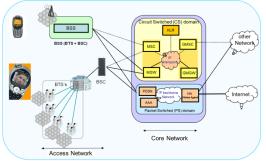
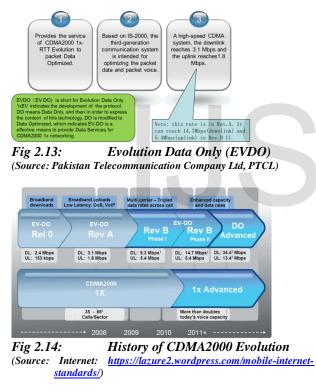
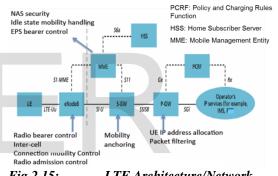



Fig 2.12: CDMA Network Architecture (Source: Pakistan Telecommunication Company Ltd, PTCL)

While the developments in the CDMA towards the mobile sector were taking place, the technology evolution for only data access via the CDMA devices was also taking root and following its technological evolution trends. Evolution Data only (EVDO) was its starting point. These were called CDMA200 systems. History of CDMA2000 evolution is explained in Fig 2.14.



- 4G (LTE)
- LTE stands for Long Term Evolution
- Next Generation mobile broadband technology
- Data transfer rates 100 Mbps
- UMTS 3G technology
- All-IP traffic

<i>for</i> Network Operators <i>Table 2.4: LTE Adv</i>	<i>for</i> End Users
 High network throughput Low latency Plug & Play architecture Low Operating Costs All-IP network Simplified upgrade path from 3G networks 	 Faster data downloads/uploads Improved response for applications Improved end-user experience

Major LTE Radio Technologies Use:

- Orthogonal Frequency Division Multiplexing (OFDM) for downlink
- Single Carrier Frequency Division Multiple Access (SC-FDMA) for uplink
- Multi-input Multi-output(MIMO) for enhanced throughput
- Reduced power consumption
- Higher RF power amplifier efficiency (less battery power used by handsets)

- Download Comparisons

In the end, the download comparisons are shown in Fig 2.16 - 2.17 to give an idea of the usage speeds along with the respective technologies in case of mobile communication.

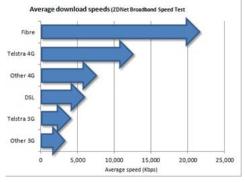
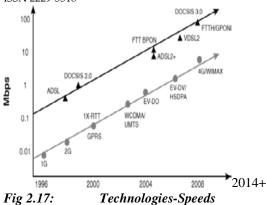



Fig 2.16: Average Download Speeds (Source: Broadband Streetstats)

(Source: Broadband Streetstats)

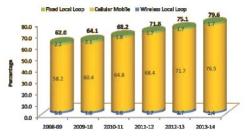
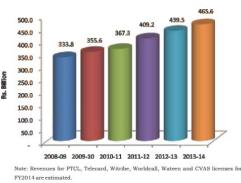
Telecom Market in Pakistan

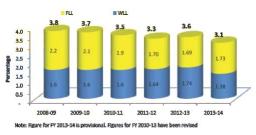
Here we focus on the overall telecom market scene in the country by covering every aspect.

Background

At present, there is no literature or statistics available in the country which can throw light on the emerging scenarios. The only available source of data is Pakistan telecommunication Authority (PTA) which to some extent collects the data from different operators. Individual companies do keep the data/information but it is generally fragmented, lacking the business vision and the insight.

Over the years, the combined Tele-density in Pakistan of Mobiles, and Fixed/Wireless Local Loop (LL) access has increased manifolds. Fig 3.1 shows the overall picture.


Fig 3.1: Tele-density (Source: Pakistan Telecommunication Authority) [3]

The Telecom Revenues show the growth of 7.0% .The increasing revenues from the telecom sector indicate the strength and size of the current Telecom market. Telecom operators are now exploring new avenues to earn from, reducing dependence on the voice channels alone. The Telecom revenue and Local Loop (LL) statistics also shows a promising picture.

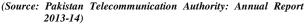


Fig 3.2: Telecom Revenues

(Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

Fig 3.3: LL Tele-density

As far as the broadband services are concerned, many developing countries have initiated Information & Communication Technology (ICT) programs. In Pakistan Broadband subscriber base has shown a promising increase in terms of numbers.

Fig 3.4: Broadband Subscribers (Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

PTCL (Pakistan telecommunication Company Limited), being the largest telecom network services provider in the country, is the Significant Market Power/Player (SMP).

Fig 3.5: Broadband Operators (Market Share) (Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

Broadband in Pakistan

	Broadband Subscribers by Technology									
Technology	DSL	HFC	WiMax	FTTH	EvDO	Others	Total			
2005-06	26,611						26,611			
2006-07	44,669			484			45,153			
2007-08	102,910	42,760	19,612	2,800			168,082			
2008-09	262,661	36,201	88,477	3,967	22,503		413,809			
2009-10	476,722	49,110	257,616	5,002	111,194	1,004	900,648			
2010-11	695,245	34,274	428,523	6,346	325,140	1,963	1,491,491			
2011-12	880,071	35,520	589,887	8,444	584,459	2,934	2,101,315			
2012-13	1,064,003	33,184	575,939	11,152	1,033,513	3,868	2,721,659			
Jul-13	1,089,765	33,102	570,916	11,416	1,078,313	3,936	2,787,448			
Aug-13	1,100,072	33,289	568,293	11,702	1,171,819	3,980	2,889,155			
Sep-13	1,149,285	33,220	570,172	12,021	1,209,927	4,138	2,978,763			
Oct-13	1,150,246	33,543	565,610	12,290	1,260,802	4,238	3,026,729			
Dec-13	1,184,736	33,553	566,452	12,912	1,379,251	4,595	3,181,499			
Jan-14	1,208,323	33,681	566,879	13,416	1,517,255	4,656	3,344,210			
Source: PTA										

Table 3.1:BroadbandSubscribersbyTechnology

(Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

DSL, CDMA-2000 & EVDO penetration statistics in Pakistan are represented below.

DSL in Pakistan

Fig 3.6: DSL (Pakistan)

(Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

CDMA-2000, EV-DO in Pakistan								
Country/Territory	Operator	Technology	Type of System	<u>Status</u>	Infrastructure Vendor(s)			
Pakistan	National Telecommunications Corporation (NTC)	1X	WLL, 450, 1900 MHz	Commercial				
Pakistan	Pakistan Telecommunication Company Limited (PTCL)	EV-DO Rev. B	Mobile, 1900 MHz	Commercial	Huawei, ZTE			
Pakistan	Pakistan Telecommunication Company Limited (PTCL)	1xEV-DO Rev. A	WLL, 1900 MHz	Commercial				
Pakistan	Pakistan Telecommunication Company Limited (PTCL)	1X	WLL, 450, 1900 MHz	Commercial	Huawei, Motorola, ZTE			
Pakistan	Special Communications Organization (SCO)	1X	WLL, 800 MHz	Commercial				
Pakistan	TeleCard Limited	IS-95A	WLL, 1900 MHz	Commercial	ZTE			
Pakistan	TeleCard Limited	1X	WLL, 450, 1900 MHz	Commercial	Alcatel-Lucent, ZTE			
Pakistan	Worldcall	1xEV-DO Rev. A	WLL, 450, 1900 MHz	Commercial	Huawei			
Pakistan	Worldcall	1xEV-DO Rel. 0	WLL, 450, 1900 MHz	Commercial	Huawei			
Pakistan	Worldcall	1X	WLL, 450, 1900 MHz	Commercial	Huawei, Samsung			

 Table 3.3:
 CDMA-2000, EVDO

 (Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

EVDO in Pakistan

Fig 3.7: EVDO (Pakistan) (Source: Pakistan Telecommunication Authority: Annual Report 2013-14)

Following are some of the other vital statistics in the following areas;

- Pakistan Mobile Subscribers Growth (Present/Projected)
- Pakistan Internet Subscribers Growth (Present/Projected)
- Pakistan Fixed Line Subscribers (Present/Projected)
- PTCL Products, Services & Tariffs

Pakistan mobile subscribers – 2009-2020

	Lower grow	th scenario	Higher growth scenari		
Year	Subscribers (million)	Penetration	Subscribers (million)	Penetration	
2009	97.6	57%	97.6	57%	
2010	102.8	60%	102.8	60%	
2011	112.9	64%	112.9	64%	
2012	121.9	69%	121.9	69%	
2015	140.0	75%	180.0	96%	
2020	175.0	87%	260.0	129%	

Table 3.4: Pakistan Mobile Subscribers Growth (Present/Projected)

(Source: <u>www.budde.com.au</u>) [4]

	Lower grow	vth scenario	Higher growth scenario		
Year	Subscribers (million)	Penetration	Subscribers (million)	Penetration	
2011	2.8	1.6%	2.8	1.6%	
2012 (e)	3.5	1.9%	3.5	1.9%	
2015	5.0	2.7%	13.0	7.0%	
2020	10.0	5.0%	30.0	15.0%	

Table 3.5:PakistanInternetSubscribersGrowth (Present/Projected)

kistan fixed-line subscribers - 2009-2020

	Lower grov	vth scenario	Higher growth scenario		
Year	Subscribers (million)	Penetration	Subscribers (million)	Penetration	
2009	6.2	3.8%	6.2	3.8%	
2010	5.8	3.6%	5.8	3.6%	
2011	6.0	3.6%	6.0	3.6%	
2012	5.8	3.2%	5.8	3.2%	
2015	6.0	3.3%	7.0	3.9%	
2020	6.2	3.1%	10.0	5.0%	

Table 3.6: Pakistan Fixed Line Subscribers (Present/Projected)

(Sept, 2013: Fixed Line Subscribers = 3,041,648. Dec, 2013: Wireless Local Loop Subscribers = 2,599,314. <u>Total = 5.64 Million</u>)

Fig 3.8: PTCL Products & Services (Source: <u>www.ptcl.com.pk</u>)

Product Name	Average Tariff	Device Price
Land line	Package charges: Rs. 499 per month Unlimited On-Net Calls (local and long distance) No Line Rent Mandatory for NTCs	No Device
V Fone	On Net Rs. 1.20/Min Off Net 1.80/Min SMS 0.35 Internet 2.50/15 Min Line Rent Rs. 120/Month	Rs. 3600/=
EVO 3.1 USB	Rs. 750/Month	Rs. 2250/=
EVO Wingle	Rs. 1250/Month	Rs. 3250/=
EVO Tab	Rs. 750/Month	Rs. 14500/=
EVO Wingle 9.3	Rs. 2500/Month	Rs. 4000/=
Nitro 9.3	Rs. 3000/Month (with Bundle Offer 4 Month advance)	Free
DSL	Rs. 750/Month (2 MB) Upto 10-GB Download	Free
IP TV	Rs. 649/Month	Rs. 4999/=

Fig 3.9: PTCL Products/Services/Tariff (Source: Pakistan <u>www.ptcl.com.pk</u>)

Research Problem, Methodology & Objectives Problem Statement

With the introduction of 3G/4G services by the mobile companies, there is an eminent threat to the legacy landline business because of the data services being offered by the mobile companies. Unless and until some sustainable model is not devised, the landline business might suffer immensely with declining revenues

Aims and Objectives

The objectives of this research are:

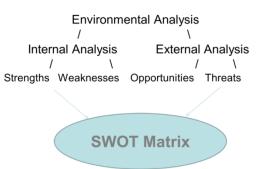
- To study the introduction of 3G/4G Services in Pakistan
- To investigate Threats and Opportunities faced by Mobile Operators
- To study the mitigation steps taken by international landline operators to counter the mobile threat.
- To devise a sustainable model which will counter mobile data threat.

Research Methodology

To achieve objectives mentioned earlier,

- Study of the present Telecom Market Pre-Post 3G/4G scenario.
- Study of service models of International telecom operators.
- Devising a service model to counter the threat of mobile data/services to the landline operators.

SWOT ANALYSIS


A comprehensive SWOT Analysis is done to access the market situation and to come up with a viable sustainable model.

Post 3G-SWOT Analysis

Analysis of the internal and external environment is an important part of the strategic planning process which is

performed by strategic planning tool called as SWOT (Strength, Weaknesses, Opportunities and Threats) analysis.

Environmental factors internal to the firm usually can be classified as strengths (S) or weaknesses (W), and those external to the firm can be classified as opportunities (O) or threats (T).

Fig 5.1: The SWOT Analysis Framework <u>Strengths</u>

Attributes of the organization those are helpful in achieving the objectives.

PTCL Strengths

- Largest Telecommunication Company of Pakistan with an extensive network.
- Strong international brand name
- Captured great market share in telecom industry
- Generating remarkable revenues
- Competent and Skillful Human Resources
- PTCL is offering multiple value added services
- All the telecommunication companies operating in Pakistan directly or indirectly dependent upon PTCL network.
- An international gateway
- Low- rates & affordable packages

Weaknesses

Attributes of the organization those are harmful in achieving the objectives.

PTCL Weaknesses

- Quality of Service
- Customer Care
- Churn management
- Functional units are not well organized
- Access Network Issues (Ageing Network)
- Low Margins due to competition

Opportunities

External conditions that may be helpful in achieving the objectives.

- Huge market potential to Increase market share.

- Development of new, innovative and customized products (Increase in company product lines)
- Adopt latest technologies.
- Making technology accessible to all (e.g. broadband).
- Aggressive marketing strategy to promote its products & services
- Developing customer centric approach
- PTCL holds more than 60% of the broadband market, and offering attractive packages for its broadband service EVO that has significantly increased its subscriber base.
- In terms of broadband users by technology, the EvDO segment remained the major contributor. It added 256,543 new subscribers, which is about 80% of the total broadband subscriptions sold by the industry in the last three months.
- Joint ventures with other telecommunication companies for cost effectiveness

<u>Threats</u>

External conditions that may be harmful in achieving the objectives.

PTCL Threats

- Highly competitive market
- Cellular companies entrance in 3G/4G industry
- Threats & Risks for PTCL in a Post 3G/4G Scenario
 - The mobilization of the Internet experience
 - o Fixed-mobile substitution
 - Competition drives customer focus
 - o Regulatory challenges
 - New devices enable the mobilization of the Internet experience
 - Most "cool" devices are 3G, 4G, WiFi enabled –
- Broadband pricing pressure
 - Intense competition in the mobile sector has led to a price war which has affected fixed broadband as well
 - PTCL DSL pricing: 10GB/month: PKR499
 - Zong GPRS/EDGE pricing:
 - 2GB/month: PKR200
 - 4GB/month: PKR400
 - Unlimited: PKR999/month or PKR10/day
- Regulatory challenges
 - Existing
 - Significant Market Power/Player (SMP) designation
 - More than 25% market share in fixed and wireless local loop, domestic and international long distance, call transit, domestic leased

lines, IP bandwidth, retail and wholesale broadband access

- Roaming in case of EVDO
- Tariff caps
- PotentialPTCL LTE plans

Challengs for 3G Operators in Post 3G Enviornment

There are many challenges for the 3G operators in the post 3G environment. These challenges can be summarizes as:

Network Issues

0

- Network infrastructure investment
- Quality of service, data throughput
- New handsets
- Price war, low ARPU
- Broadband pricing at different stages of market development
- Service pricing in emerging market
- Churn

These are explained individually, one by one.

Network Issues

- Operating at 2.1GHz, UMTS coverage range is only about 65% of GSM900 for voice and 40% for 384/128kb/s data
- Additional sites may be required
- Lower frequency bands are desirable for UMTS coverage

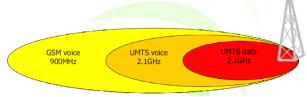


Fig 5.2: Frequency Bands

Network infrastructure investment

- 2.5G (GPRS/EDGE) core network is 3G ready
 - New radio access network (RAN) required
 - Node B (base stations)
 - o RNC (Radio Network Controller)
 - Antennas for 2.1GHz band, cabling etc
- Investment required for a nationwide 3G network in Pakistan is hundreds of millions of US\$, potentially > US\$1 billion

Quality of service, data throughput

- Experience from real life 3G networks: The average capacity of a 14Mb/s HSDPA cell may only be 1.8Mb/s

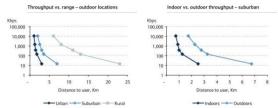


Fig 5.3: Throughput vs Range (Indoor/Outdoor) (Source: <u>www.budde.com.au</u>)

New handsets

- Network features will only materialize if customers' handsets support them
- o Handset subsidies?
- FBR introduced a new tax on handsets in April 2013
- o PKR1,000 on smartphones
- o PKR500 on other handsets (non-satellite)
- Expected to raise PKR5 billion in government revenue annually
- Smartphones sell for PKR100,000...3,000

Price war, low ARPU

- Pakistan has some of the world's lowest prices for mobile services
 - PKR2 (US\$0.02) per minute within Pakistan or to USA
 - GPRS/EDGE: PKR100 (US\$1) per GB of data
 - Unlimited data for PKR999/month or PKR10/day
 - Cheaper than unlimited DSL
- More ARPU from increasing usage, new services?
 - In most markets where mobile penetration is still growing, increasing 3G usage and falling prices have compensated each other, so that ARPU has not risen significantly (10...20%)

Overall ARPU across all mobile operators in Pakistan - 2002; 2004 - 2009

Year	ARPU (PKR/month)	ARPU (US\$/month)
2002	1,135	19.2
2004	507	8.5
2005	356	5.9
2006	268	4.5
2007	255	4.3
2008	248	3.0
2009 (e)	250	3.0

Note: PTA stopped reporting this indicator in 2008

0

Mobile monthly ARPU by operator - 2009

Operator	ARPU (USS/month)
PMCL (Mobilink)	2.7
Telenor	2.5
PTCL (Ufone)	3.0
Warid Telecom	3.5
Zong (formerly CMPak)	1.7

 Table 5.1:
 Challenges for 3G operators: Price

 War, Low ARPU

Broadband pricing at different stages of market development

- Case study South Africa
- 3G end-user pricing at launch (2004):
- 1GB of data cost R (*Rand*) 599 (US\$99) per month including a dongle (24 months contracts)
- <u>15% of per-capita GDP</u>
- Average income was R1350 (US\$220) per month
- "Early adopter" <u>ARPU of 3G users was around</u> <u>US\$90/month (</u>2G users: US\$24)
- Mobile penetration was 45%
- International bandwidth was limited (0.02kb/s per population) and very expensive
- •
- Case study South Africa 3G end-user pricing 2012
 Prepaid 2000 Contract

		Prepaid	1	,3% of per-ca	Pile		C	ontract		
Bundle Name	(MBO	+ Cost	e In-Bundle Rate (per MB)	Out-of-Bundle Rate (per MB)	Bundle Name	e Bundle Size (MB)	+ Cest	In Queda Rate (per ME)	Out-of- Bandle Rate -	Out-of- Bundle Rate -
MyMeg 10	10	R9	90c	R2					Contract	Top Up
MyMeg 30	30	R25	83c	R2	Melveg 10	10	R9	90c	R1	R2
MyMeg 100	100	R49	490	R2	MrMeg 30	30	R25	83c	R1	R2
MyMeg 250	250	R99	AC .	R2	Myfileg 100	100	R49	49c	R1	R2
MyMeg 500	500	R159	320	R2	Milleg 250	250	R99	40c	R1	R2
MyMeg 750	750	R220	29c	R2	Metileg 500	500	R149	30c	R1	R2
MyGig 1	1024	R279	27c	R2	MyNeg 750	750	R220	29c	R1	R2
MyGig 1.5	1536	R319	21c	R2	M/Gig 1	1024	R249	24c	R1	R2
MyGig 2	2048	R369	18c	R2	MiGia15	1536	R299	19c	R1	R2
MyGig 2.5	2560	R429	17c	B2	M(Gig 2	2048	R349	170	R1	R2
					M/Gig25	2560	R429	17c	R1	R2
MyGIG 3	3072	R499	16c	RZ	M(Gig 3	3072	R499	16c	50c	R2
MyGig 6	5120	R029	16c	R2	M/Glg 5	5120	R789	15c	500	R2
MyGig 10	10240	R1629	16c	R2	MrGig 10	10240	R1440	14c	500	R2
MyGig 20	20480	R3199	16c	R2	MrClig 20	20400	R2050	140	454	R2

<u>APRU: R157 (US\$21)/month</u> (16% of which was non-messaging data revenue)

Table 5.2: Broadband pricing at different stages of market development

(Source: www.budde.com.au) Service pricing in emerging market

- 3G broadband pricing in India
- Services launched in 2010/2011
- o 1GB of data costs around INR250 (US\$4) per month which is equivalent to 3% of per-capita GDP
- ARPU is only US\$1.60 per month
- Pakistan
- PKR100/GB EDGE data is equivalent to 1% of percapita GDP
- Prices could and should be higher

Churn

- Mobile number portability (MNP) increases churn
- Churn rates in some markets are as high as 80%, can increase with 3G
- Service availability, quality
- o Attractive offers
- What can be done?
- o Loyalty programs
- o Churn management systems
- o Targeted offers

3G Licensing

For the 3G licensing, there was a six years of delay in Pakistan. Following are the timelines/statistics which caused these delays and the final bidding of the frequency spectrum.

- First announced in 2007
- 2010: PTA says spectrum will be sold to existing operators who can then use it to offer 3G or 4G services 2011

- Government announces target of US\$1 billion in 3G license fees
- PTCL claims no new spectrum concessions can be sold before March 2013 (seven years after its privatization)
- Government says 3G licenses are not new concessions but extensions of existing ones, challenges 2013 time limit
- 2012: 3G Policy calls for spectrum auction among existing and new players
 - New players not to launch services before March 2013
 - 3 licenses with a base price of US\$210 million each
 - 3 blocks of 10MHz of paired spectrum in 2.1/1.9GHz band
 - 8-15 years tenure
 - More 3G and 4G spectrum to be made available March 2013
 - Expressions of interest from:
 - Mobilink, Ufone, Zong, Qubee
 - Vodafone, NTT DoCoMo, QTel, AT&T, Roshan
- 2013:
 - New government announced technology-neutral licenses (3G/4G), increases its revenue target to US\$1.2 billion
 - Withholding tax on mobile services increases from 10 to 15%
 - on top of existing 19.5% federal excise duty
 - Date set for April 2014
 - Reserve price to be set after receiving report from consultant
- 2014:
 - PTA invites bids for 3G license.
 - Turkcell expresses interest, visits PTA
- PTA Information Memorandum (Feb. 2014) <u>www.pta.gov.pk/media/im_250214.pdf</u>
 - 2100 MHz: 2x30 MHz for 3G (3 blocks, base price US\$295m)
 - 1800 MHz: 2x20 MHz for 4G (2 blocks, base price US\$210m)
 - 850 MHz: 2x7.38 MHz (new entrants only, base pr. US\$291m)
- 15 years license term
- Coverage and QoS obligations

Table 5.3 shows the results of the final auction which took place for the sale of the frequency spectrum.

3G Auction					
Band	Available Spectrum	Zong	Mobilin k	Ufone	Telenor
2100 MHz	30 MHz	10 MHz	10 MH z	5 MHz	5 MHz
		\$306.9 m	\$300.9 m	\$147.5 m	\$147.5 n
4G Auction					
1800 MHz	20 MHz	10 MHz			
		\$210 m			

Table 5.3:3G/4G Auction Results

Case Studies & Analysis

Now we look at the case studies in the countries which have a similar telecom scenarios and environments in order to come up with a sustainable model after analyzing what other operators have done to save their landline businesses.

How Markets Behave in Post 3G Enviornment

In order to compare the telecom infrastructures between different countries, there is a need to do the benchmarking. One such factor is to look at is the Gross Domestic Product (GDP) of each country. Gross domestic product (GDP) dollar estimates are derived from purchasing power parity (PPP) calculations (Per Capita Income). It is calculated in terms of the value of all final goods and services produced within a country in a given year, divided by the average (or mid-year) population for the same year.

		<u>IMF (2012)</u>	World Bank (2012)	<u>CIA (2013)</u>
•	Pakistan	254.66	240.91	258.33
•	India	320.25	323.00	333.33
•	Bangladesh	163.58	154.25	175.00
•	Indonesia	410.25	413.00	433.33
•	Sri Lanka	503.80	512.16	541.66

* Amount in US\$ Per Month

Table 6.1:IMF, World Bank & CIA:
purchasing power parity (PPP)
calculations (Per Capita Income) per
year.Severe IME World back (IA)

(Source: IMF, World bank, CIA)

Or our analysis, we have picked up Pakistan, India, Bangladesh, Indonesia and Sri Lanka because of their similar telecom infrastructure plus almost similar power parity (PPP) Per Capita Income (Table 6.1) per month. It can be easily converted to per month basis for clarity (Table 6.2).

<u>IMF (2012)</u> <u>World Bank (2012)</u> <u>CIA (2</u>	<u>2013)</u>
--	--------------

 Pakistan 	3,056	2,891	3,100
 India 	3,843	3,876	4,000
 Bangladesl 	h 1,963	1,851	2,100
 Indonesia 	4,923	4,956	5,200
 Sri Lanka 	6,046	6,146	6,500

* Amount in US\$ Per Year

Table 6.2:IMF, World Bank & CIA:
purchasing power parity (PPP)
calculations (Per Capita Income) per
month.

Let's first have a look at the Average Revenue per User (ARPU) in all these countries as a percentage of the per capita income in case of mobile networks (Table 6.3). However the data usage on mobiles has not reached such level of usage because of many varied factors. It will not be out of place to also calculate mobiles ARPU per Month as percentage of per capita income for mobile data services (Table 6.4).

ARPU's (Mobile) Per Month

	<u>ARPU</u>	% of Per Capita	
 Pakistan 	2.50	0.98	
India	3.00	0.93	
 Bangladesh 	2.50	1.52	
 Indonesia 	3.05	0.74	
 Sri Lanka 	2.41	0.47	

* Amount in US\$

Table 6.3: Mobiles ARPU: Per Month as percentage of per capita income. (Source: IMF, World bank, CIA)

<u>ARPU</u>

	Voice	<u>Data</u>
 Pakistan 	2.20	0.30
 India 	2.64	0.36
 Bangladesh 	2.20	0.30
 Indonesia 	2.68	0.366
 Sri Lanka 	2.12	0.28

* Note: Data : Voice (10-12 Revenue is from Data; Ufone)

Table 6.4:MobilesARPU: PerMonth aspercentageofpercapitaincome(Mobile Data services).

Let's now look at each countries telecom analysis in terms of the following parameters:

- (a) Fixed and Mobile Operators presence
- (b) Key Developments on the Telecom scene

1. Banglad	lesh	
Fixed Network	<u>Operators</u>	Mobile Network
Bangladesh Telecommunic: Company Limit formerly Bangla Telegraph and Board (BTTB) Peoples Teleco (Formerly Bang Rural Telecom Authority) Sheba Telecom WorldTel Dhaka Phone	ed (BTCL) - adesh Telephone om gladesh munications	 Grameenphone Banglalink Robi Airtel Bangladesh Teletalk Citycell
ble 6.5:	Bangladesh:	Fixed & Mo

e 6.5: Bangladesh: Fixed & Mobile Networks operators

Key Developments

Ta

- Bangladesh's mobile market passed 100 million subscribers in early 2013
 The five-year period prior to this had seen mobile subscriber numbers grew almost 20 times
 Of the mobile operators, Grameen Phone has 42% of the total mobile subscriber base (mid-2013)
 The first 3G licence was awarded to the state-owned operator, Teletalk, which launched a pilot 3G offering in late 2012.
 The 3G licensing for private operators was seriously delayed but finally took place in September 2013, with four operators winning licences.
 Coming into 2013, the number of mobile internet services had grown rapidly to dominate the online market (narrowband offerings; 2.5G-based services).
 The fixed-line market experienced a major setback in the first half of 2010 when the regulator shut down five operators in major move against illegal VoIP services.
 This market segment (fixed-line market) had effectively recovered from the
 - This market segment (fixed-line market) had effectively recovered from the setback by 2013 but it remained a depressed market with little growth

Table 6.6:

BSNL

MTNL

Bharti

Tata

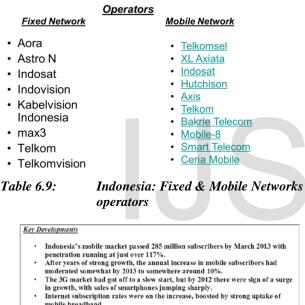
Bangladesh: Key Developments

<i>2</i> .	India

Fixed Networ

Operators

<u>k</u> <u>Mobile Netwo</u>	<u></u>
Bharti Airtel	
 Vodafone India 	a
Reliance Com	munications
Idea Cellular	
BSNL	
TATA DOCOM	0
<u>Aircel</u>	
Uninor	
MTS India	


- Reliance
- Videocon
 - MTNL
 - Loop Mobile India
 RIL INFOTEL
- Table 6.7:India: Fixed & Mobile Networks
operators

Key Development

- Year 2012 saw a significant 'correction' in India's mobile market, as operators
- removed inactive subscribers from their databases. By end-2012 the country had 865 million mobile subscribers, for a penetration of 69% This was down from 895 million (penetration 72%) at end-2011. By April 2013 there were 867 million subscribers as the market finally returned to
- positive growth. GSM had further strengthened its position as the dominant mobile technology over
- CDMA. The number of fixed broadband internet subscribers was steadily increasing, reaching 15 million for a penetration of just over 1% by population by the start of 2013. DSL continues to hold the major portion of the local fixed broadband market: 85%
- by end-2012.
- op entre2012. The market had witnessed a large scale roll-out of 3G networks by operators across the country following the long-delayed licensing; However, 3G had not immediately delivered the expected boost to the market in terms of large scale adoption of mobile data services; Nevertheless, mobile broadband was expanding rapidly and had . quickly been established as a key form of broadband access.
- quickty been established as a key form of broadband access. Following the Supreme Court decision cancelling operator licenses in February 2012, the re-auction of the vacant spectrum took place in late 2012 and early 2013; The process was generally seen as a failure for the government as the auctions failed to attract the level of bids and bidders; The license cancellations and subsequent re-auctioning of spectrum had been a major upheaval for India's telecom market valoos. telecom market place.

Table 6.8: India: Key Developments (Source: <u>www.buddee.com.au</u>)

Indonesia 3.

- .
- mobile broadband.
- Construction of the USS1.5 billion Palapa Ring optical fiber cable project is continuing.

Table 6.10: India: Key Developments (Source: <u>www.buddee.com.au</u>)

A massive development has taken place in Indonesia which needs to be looked at more closely. The Broadband subscribers, Cellular and Fixed Line Subscribers, Indonesia Digital Network initiative are summarized below.

	Unit	Years ended December 31,		
	UNIC	2013	2012	Changes (%)
Broadband Subscribers				
Fixed broadband (Speedy)	(000) subscribers	3,013	2,341	28.7
Mobile broadband (Flash)	(000) subscribers	17,271	11,039	56.5
Blackberry	(000) subscribers	7,556	5,764	311
Total Broadband Subscribers	(000) subscribers	27,840	19,144	45.4
Cellular Subscribers				
Postpaid (kartuHalo)	(000) subscribers	2,489	2,149	15.8
Prepaid (simPAT), Kartu As)	(000) subscribers	129,023	122.997	4.9
Total Cellular Subscribers	aned (000) subscribers	131,513	125,146	5.1
Fixed Line Subscribers				
Fixed wireline	(000) subscribers	9,351	8,946	45
Fixed wireless	(000) subscribers	6,766	17,870	(621)
Total Fixed Line Subscribers	(000) subscribers	16,117	26,816	(39.9)

Table 6.11: Indonesia: Users Statistics for various services

(Source: Indonesia Digital Network)

Fig 6.1: (Source: Indonesia Digital Network)

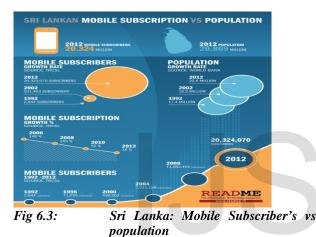
In order to accelerate the adoption of 3G mobile devices, Telkomsel: - Intensified collaboration with device principals and distributors of local and	Exclusive agreements with s revenue sharing arrangement phone services, public card maintenance), Data and Inter ancillary facilities related to	nts to expand fixed line phones (including their met Networks, and
global brands of mobile devices by introducing affordable 30 mobile device bundled packages. Improved network capacity, speed and coverage. The operator upgraded its GSM and 3G HSPA- network across the country. In addition, refarming for the 1800 MHz GSM band, helped Telikomsel nuccessfully provide AGUTE acrices for the APEC (Asia-Pacific Economic Cooperation) CEO Summit in Bail, Indonesia.	They succeeded in improving the performance of fixed wire line business line through the implementation of a "More for Less" program in 2013, where subscribers are able to get deeper discounts with greater telephone usage such as unlimited talk time using the house phone, unlimited broadband access with various bandwidth options and television channels with attractive program packages.	"Indonesian Wi-Fi" was launched in 2012 to meet the needs of the community in accessing Wi-Fi based internet at the airports, shopping malls, hospitals, universities/schools and cafes

Fig 6.2: Indonesia: Initiatives

4. Sri Lanka

Fixed Network	<u>Operators</u>	Mobile Network
•Sri Lanka Telecom (SLT) • <u>Lanka Bell Limited</u> •Suntel		Dialog Axiata PLC Mobitel (Pvt) Ltd Etisalat Lanka (Pvt) Ltd Bharti Airtel Lanka (Pvt) Ltd Hutchison Telecommunications Lanka (Pvt) Ltd
Table 6.12:	Sri Lank: Fixe	d & Mobile Network

operators


S

Key Development

- Successful implementation of its <u>ultra high speed Broadband Network</u> under its nation-wide network modernization project "i-Sri Lanka" which has already driven an increase of 40,000 new broadband connections to the network. It will provide ultra high speed broadband 20Mbps service to more than 90% of
- customers. Broadband and PeoTV (triple play) services. The i-Sri Lanka project was kicked-off in 2011 to enhance and upgrade SLT's existing fixed network, by expanding the fibre network to bring it closer to customers through Fibre-to-the-Node (FTTN) deployment of Multi-Service Access Nodes (MSANs)
- Nodes (MSANS). Near Generation Network (NGN) modernization project. Despite a global trend of declining fixed line subscribers, SLT has consistently driven a steady increase in fixed customers over the last 3 years.
- The Company's impressive product range and the demand for high speed uninterrupted Broadband and entertainment through PEO TV has seen fixed
- uninterrupted by the second and an overstamment through 150 to this second the PSTN line (SLT Megaline) customers steadily increase. The demand for high speed uninterrupted broadband has fuelled the company's strategy to deliver double-play and triple-play services, which has contributed to ongoing growth in our fixed customer base and revenues.

Sri Lanka: Key Developments Table 6.13: (Source: www.buddee.com.au)

As is the case with Indonesia, Sri Lanka has also shown very promising initiatives/development in terms of mobile subscribers and Sri Lankan telecom product Portfolios.

(Source: Readme)

Fig 6.4: Sri Lanka: Siri Lanka Telecom Product portfolios

(Source: Sri lanka Telecom)

The in-depth analysis of the telecom scene and different developments taking place in the countries around us while also keeping the western trends in mind, we are in a better position to place and develop a model to implement our own strategy which will be both modular and sustainable for the future growth.

Conclusion, Model & Recommendations

In the end, conclusions are drawn, a sustainable model is developed and future recommendations are made. Post 3G Road Map for Fixed Line Operators

Based on the data analysis, following are the outcomes as far as the fixed line operators are concerned.

1. Opportunities & Strategies

Opportunities and the strategies for the fixed line operators to stay in the business are outlined below:

Focusing high bandwidth on users/applications

- Current mobile networks will begin to struggle with average data consumption per user of around
- 9GB/month (3.5G, 42Mb/s, 10MHz spectrum, 50% penetration)
- 22GB/month (LTE added, 10MHz spectrum, 50% penetration)
- Only fixed-line broadband can support the premium customer segment
- High-usage urban residential and SME sector
- Business/enterprise sector
- Government, public sector
 - Maximizing the copper asset: From ADSL to VDSL2+
 - The copper access network of a national carrier is a valuable asset that is not easily replicated or replaced
 - Technology evolution has enabled quantum leaps in bandwidth
 - ADSL: up to 8Mb/s
 - ADSL2, ADSL2+: up to 24Mb/s
 - VDSL, VDSL2, 2+: up to 200Mb/s (up to 300m from DSLAM, the can he extended with FttN)
 - Telcos who fail to follow this path risk losing their fixed-line business to competitors

Case Studies

Table 7.1 outlines various case study comparisons as to how some operators suffered or initiate certain steps to deal with the fixed line challenge.

Not maximizing the copper asset: Telkom	
Kenya	
_	Majority stake was acquired
	by France Telecom/Orange in
	2007
-	Concentrated on the mobile
	sector, incl. mobile broadband
_	As of 2014, DSL service is
	still only available at

229-5518	0 0 .
	256kb/s2Mb/s
-	Fixed-lines in service fell 80%
	from 265k to 58k
-	11k ADSL users (population
	44 million)
-	Three competitors rolled out
	metropolitan and long-
	distance fiber optic networks
	since 2005 and have 60k
	FTTH subscribers
_	Telkom reacted in 2011 by
	installing FTTH in two
	suburbs of Nairobi
Maximizing th	ne copper asset: From ADSL to
VDSL2+: Pak	
	PTCL launched VDSL in
	2011 in Karachi, Lahore,
	Islamabad in combination
	with FTTC, FTTB
_	Unlimited downloads
	• 10Mb/s: PKR
	9,999/month
	• 20Mb/s:
	PKR15,000/month
	• 50Mb/s:
	PKR20,000/month
_	Nayatel installed FTTH in
	Islamabad in 2007
Telekom Mala	ysia (TM) HSBB project
_	National High Speed
	Broadband (HSBB)
	infrastructure using a mix of
	fiber and VDSL, 20,000 WiFi
	hotspots
_	Initiated 2008, launched 2010
_	Urban and suburban areas
_	Total cost estimated at MYR
	(Malaysian Ringgit)11.3
	billion (US\$3.3 billion) over
	ten years
	• Government
	contributed MYR5.8
	billion
	• Strict procurement
	policy, 'out of the
	policy, 'out of the box' strategy saved
	1 1
_	box' strategy saved
_	box' strategy saved MYR 1 billion
-	box' strategy saved MYR 1 billion 1.5 million households (of 6.2
-	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers Wholesale deals with other
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers Wholesale deals with other major telcos under Open Access model (condition of
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers Wholesale deals with other major telcos under Open
	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers Wholesale deals with other major telcos under Open Access model (condition of government funding)
-	box' strategy saved MYR 1 billion 1.5 million households (of 6.2 million) passed by Sept. 2013 Triple play, 20Mb/s Content development platform, encouraging local developers Wholesale deals with other major telcos under Open Access model (condition of government funding) Faster growing than NBNs

Backhaul Services

- New fixed-line products for 3G operators
- Need for increased backhaul capacity
- Tens of thousands of 3G and 4G base stations will require backhaul capacity upgrades
- Fiber offers better latency than microwave links (µs vs. ms)
- Rapid response ability required

Multimedia services and applications

- Presence services
- Enhanced Voicemail (e.g. message forwarding, web-based interface)
- Unified Messaging (voice, SMS, MMS, IM)
- Audio/Video/Web Conferencing
- Content Sharing (e.g. video streaming, web content)
- Location-based services (location finder, navigation, traffic)
- Electronic ticketing (events, travel, boarding pass)
- Multi-network, multi-device access
- Inter-network, inter-device handover

Drivers for network operators to adopt IMS

- New revenue streams from multimedia services
 - Subscriber growth is slowing
 - Mobile voice market is
 - saturated, ARPU is falling
- Reduce costs
 - Next-Generation Network (NGN) approach
 - Easier, faster implementation of new services
 - Standardized third-party interfaces, multi-vendor approach

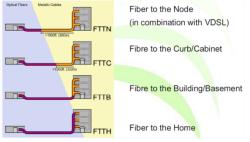
LTE as an extension of the fixed broadband network

- Australia: National Broadband Network (NBN)
- \$36...73 billion (!) nationwide FTTH deployment
- 93% of homes, schools, workplaces
- Australia urbanization: 89%
- Political project born

-

- First 100Mb/s promised, then 1Gb/s
- Opposition (now in government) wants to substitute more FTTH with FTTN and with wireless, especially in rural and regional areas

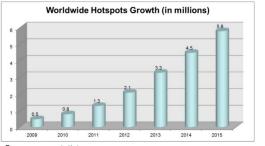
Worldwide Trend for IPTV Services


- Worldwide revenue growth for IPTV services in the next five years will outpace gains of the overall global pay-TV space
- Between 2011 and 2017, IPTV revenues are anticipated in 2017 to reach \$21.3

- billion, more than double 2011 revenues totalling \$9.7 billion
- Global IPTV revenues forecast to double by 2017 with U.S. leading the way

- Fiber Optic Access Strategies in Low ARPU Environment

Fiber to the home can be achieved first by first going up to the fiber to the node, then the curb/cabinet and finally to the building. This will simply divide the project into smaller chunks, thus fewer investments before finally reaching all the way to the customer premises (Fig 7.1).



• Business case depends on how many premises can be reached from a node Fig 7.1: Type of Fiber optic Access (Low ARPU's)

(Source: PTCL)

- Worldwide WiFi Hotspots

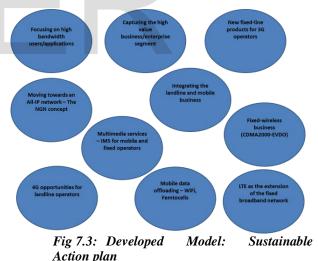
The growth of the hotspots around the world (Fig 7.2) has simply changed the dynamics of the business. The best strategy for the landline operators is to either start on its own or enter into agreements with the hotspot operators by providing them with the backend bandwidth.

Source: www.statista.com

Fig 7.2:

Hotspots Growth around the World

- Tariffs


- By introducing low cost tariffs, competitor base pricing, flexible and affordable promotion packages like Vodafone has done in India & Grameen phone in Bangladesh.
- To compete on volume as initial price of 3G data is going to be high due to huge licensing and infrastructure costs.
- Creating competitive & innovative service bundling.
- Developing Customer Centric Approach

- Creating Value for your services
- Value your customer and meet their expectations
- Formulate strategies to retain customers
- Transform organizational culture into superior service culture
- Become a solution provider and get the competitive edge

Model & Recommendations

All the above Strategies for Fixed Line companies to turn challenges into new opportunities can be summarized as:

- Focusing on high bandwidth users/applications
- Capturing the high value business/enterprise segment
- New fixed-line products for 3G operators
- Mobile data offloading WiFi, Femtocells
- Fixed-wireless business (CDMA2000-EVDO)
- 4G opportunities for landline operators
- LTE as the extension of the fixed broadband network
- Integrating the landline and mobile business
- Multimedia services IMS for mobile and fixed operators
- Moving towards an All-IP network The NGN concept

This research has focused on the way the 3G technology shall affect PTCL growth and its potential to do so in future. In our attempt to understand the impact of 3G invasion, we focus on how economic growth and prosperity have been affected in other parts/countries of the world and how PTCL can move forward and transform this threat into a big opportunity by taking various steps to save its landline business.

References

- [1] Pakistan Telecommunication Company limited (<u>http://www.ptcl.com.pk</u>)
- [2] Peter Rysavy, 3G Americas (<u>http://www.prnewswire.com/news-releases/3g-</u>

americas-publishes-rysavy-research-gsm-datacapabilities-white-paper-76892487.html)

- [3] Pakistan Telecommunication Authority (<u>http://www.pta.gov.pk/annual-</u> reports/ptaannrep2013-14.pdf)
- [4] Telecommunication Research Site (www.budde.com.au)

IJSER